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Random-neighbor Olami-Feder-Christensen slip-stick model
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We reconsider the treatment of Lise and Jer{dys. Rev. Lett76, 2326(1996] on the random neighbor
Olami-Feder-Christensen stik-slip mod@&hys. Rev. Lett68, 1244 (1992] and examine the strong depen-
dence of the results on the approximations used for the distribution of gtggs[S1063-651X98)09308-9

PACS numbegs): 05.40-+j, 05.70.Jk, 05.70.Ln

The work of Olami, Feder, and Christenddn on a slip-  where®(x) is the Heaviside functiopsee Fig. 19)].
stick earthquake model indicated, some time ago, that self- The random version of the OFC mod&OFQ consists
organized criticality(SOQ may occur without a local con- of N sites initially with an energ§;<E., fori=1,... N.
servation law. Recently, it has been claimed by Lise andrhe sites with energf below E, are stable siteéinactive
Jenser[2] that the random-neighbor version of the Olami- and will be labeled by a minus superscript; the sites with
Feder-ChristensefOFC) model also presents critical behav- energyE aboveE, are unstabléactive and will be labeled
lor above some critical dissipation levak<ao, Wherea, 5 plus superscript. The energies of all sites are increased
= 1/q is associated with local conservation fpmeighbors.  gjqwy until the instant when the energy of a certain site
These authors based their claims on some theoretical meapsa -hes the valuE,. This site then becomes unstable and

f"?'d argume_nts and_ on numerical simulations with sysftem%e system relaxes in a very short time scale according to the
with up toN=400 sites. In order to perform the mean-field gules

calculation they had to make many different assumption
about the behavior of the model.

More recently, Chabanol and Haki8] and Brder and
Grassbergef4] performed a more detailed analysis of thewhereEm stands for the energy af other sites chosen at

same model, showing that what has been interpreted as r%ndom ande<1/q. Eventually some of these sites ma
critical behavior in[2] indeed corresponds to a subcritical =19 y 8 Y

region with very largegbut finite) mean avalanche sizes. Al- become unstable and also relax and so may generate an ava-
though Brer and Grassbergd#] give a comprehensive Iapchmg process that stops only when the energies of all
treatment of the random-neighbor version of the OFC modepites are again belot . If we havea = a.=1/q we say that
(which we will designate ROFC it may be of interest to the system is conservative. S

detect exactly where the theoretical arguments givef2]n Following [2], the probability of an inactive site to be
fail, since that point is not transparent in their paper andactivated by receiving a contributiarE ™ of an active site is
similar problems may occur or be of interest in the future.
This is the aim of our paper. We will show that the problem fEc
is not in the method used 2] (which eventually can give

useful information about the mechanism behind $O in P.(E")= — = " . (3

the strong dependence of the output of the calculations on p(E)dE E

the exact form of the distribution of statpgE) of the sys- 0

tem.

To reinforce the strong dependence of the results on th&he branching ratier is the average number of new unstable
specific form ofp(E), we revisit the ROFC model, but this sites created by an unstable site that relaxes. Clearly, in order
time introducing a simple and small modification on theto have a critical branching process, we must hawvel . For
p(E) distribution, which consists in replacing the interval g random neighbors we have
[0,E;] where the uniform distribution used by Lise and

Ei(t+1)=0, E (t+1)=E(t)+aE", )

Jensen was defined by the intervgD,E*], with E* fxdE*P (E*) p(E¥)
<E. (E; is the threshold value above which the sites be- E, "
come unstable and relgxhat is, o=q = : (4)
L f dE"p(E™)
P(E)=—; O(E)O(E"~E), (D) :

wherep(E™") is the distribution of states for unstable sites,
that is, sites with energy aboue*. Adopting the notation

= [(---)p(E)dJE/[p(E)dE f , find
*Electronic address: osame@ultra3000.ifgsc.sc.usp.br < > J(-)p(E) Ip(E) or averages, we fin
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FIG. 1. (a) Uniform approximation for the energy distribution
p(E) of the ROFC model. The solid line corresponds to the interval
of E used by Lise and JensdQ),E.]; the dashed line corresponds

to a smaller interval o, [0,E*], used in our calculationgb) A

more realistic approximatiotnon-uniforn) of the energy distribu-
tion of the ROFC model, fog=4 (with four peak$ The param-
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FIG. 2. Normalized “critical” dissipation levek,=ka/4 as a

function of E*. Values fora, above 0.25 are not physically admis-

etersA, and A, are, respectively, the half-width of the peaks and sjple.

the width of the gaps. The value p{E) at the peaks is andE.
=E"=T7A,+34,.

The critical branching ratier=1 defines a valuer. above
which infinite avalanches may occur. The quantii/’) is

estimated 2] as

<E+>=g- (6)

The average ot~ is calculated as
EC
f P(E)dE

Ec—aE"

fE° p(E)dE

E.—aET

(ET)=

1 E*
I—f E dE
E*—E.+a(E")JE.~a(E")

1 (E")?-EZ+(2E.—(E"))a(E")

= . 7
2 E*—E.+a(E") "
With this result and Eq(6) we get
(2a—a?)x?+[2E*(1— a) — 2E.|x+ E2— (E*)%2=0,
tS)
wherex=(E™). This leads to the simple solution
E.+E*
+\_ ¢
(EN=—5— ©)
Finally, we get for the branching ratio
E*-E E.+E*
o=q ¢ a(Eg ) (10)

E* E*(2—a) |

The critical conditionc=1 leads to

_E~E'(9-1)/g

= 11
T E T B 5

For example, ifq=4 (the case studied if2]), we have

_E.—3E'/4

= . 12
E.+E*/8 12

ac

If we considerE*=E_ we recover Lise and Jensen’s value
a.=2/9. However, the value ot has a strong dependence
on the value ofE*. We see that, already for the value
E*/E.=24/25=0.96, «. achieves the physical limit 0.25.

In Fig. 2 we show the behavior of the normalized cou-

pling a,=qa./4 as a function ofE*. With this normaliza-

tion, the conservative case always corresponda 400.25
(as forq=4). We see that the allowed region of values for

E* so thata,<0.25 is very narrow for any and that the
value of e, varies strongly in this region. We have already
shown in another worKsee[5]) that already with lattices
with N=600 sites it is possible to see a finite mean size
avalanche foww=0.23, in contrast to the results ] based
on simulations in lattices witihN=40C.

Besides showing that Lise and Jensen’s approach is not
robust with respect tp(E), we may ask what kind of model
produces the uniform distribution

P(E)=06(E)0(1-E) (13

used by those authors. We found that an extremal version of
the Feder-Feder model, hereforth called the EFF model, in-
deed produces this distribution. Extremal here is used in the
same sense it was used in the Bak-Snappen coevolution
model[6]. In the dynamics of extremal models there is no
driving step. We locate the sitewith the largest value of
Ei=maxE;} at the initial instant. This site relaxes follow-

ing the original Feder-Feder rules

ENt+1)=7%, En(t+1)=Eq(t)+a, (14)
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FIG. 3. Space of parameters fofE) in terms
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where 7 is a noise,n[0,e]. If we considere=a=1/4 we
will have Eq.(13). In this model the size of an avalanche is
defined as the number of sites with enefgy>1 that relax

in a row. Now, if we repeat Lise and Jensen’s calculation
using these EFF rules instead of the OFC rules, we get the

self-consistent result,=E;/q.

The branching rate is given by

(i—1)A,
7A

Ec
7A,

a(E™)
78, |

o=4P' =41+ (18

p

In a similar way used to obtain E¢7), we calculate an

Itis also possible to show that a more realistic assumptiorxpression fo{E ™), which is associated with E¢6), which
aboutp(E) leads essentially to the same results obtained byeads

[3,4]. If we simulate the ROFC model witlp=4 we will get
an energy distributiop(E) with four peakg2]. They show

clearly thatp(E) is not a simple constant. We then decided
to repeat the same calculations but supposing this time that

p(E) had the(more realisti¢ form shown in Fig. 1b), where
A, is half the width of each peak anil, is the width of the
gaps between two peaks. This means that

a for Eel,;, Eel,, Eelz, or Eel,
pP(E)= ,
0 otherwise,

(19

where 1;=[0A,], 1,=[A,+A,38,+A4,], [3=[34,

+2Ap,50,+2A4], andl,=[5A,+3Ap,7A,+3A].
We also have thdE* =3A,+ 74, is the maximum value
for which p(E)#0. Then we have

7k (16)

The lower limit of the integral in the numeratdg,
—aE*

the indices =1,2,3,4. Considering each one of the possibili-
ties, the integral®'. (E*) assume the generic form

(i=1)Ap
N7

aE"

7A

E.
7A

P.(EH)=1 : (17)
p p p

ci. B [7ApH(-DAG] (1-a)
(E >_oz(Z—oz) a(2—a)
Wi
ae—a) (19
where
Yi=ME(1—a)—[7TA,+(i—1)Ap]}?
+4a(2— a)[x;— 14— 1)]A Ay, (20)

with x;=24, 26, 32, and 42, for=1, 2, 3, and 4, respec-
tively. Imposing the branching conditian=1 and using Eg.
(19 we get

TA 2+ @) +4(i—1)A,—4E(1— @)+ TaE .+ \y;=0.
(21)

For instance, if we také\,=0.08 andA,=0.1 [which cor-
responds to Fig. (b)], the critical branching condition leads
to values of * outside the physical rangéhat is, a*
>1/4). Therefore, in this particular example, it is physically

E" can now belong to any of the four intervals that o hidden to assume that=1, so there is no self-organized
define the peaks of the distribution, to which we will asssign

critical state.

If we take the limit for the conservative caéibat is, A,
—0 andA,— aE,.), the four peaks tend to fouf functions
at (i—1)aE. and it is easy to see that the conditior+ 1
leads to the only possibilityy* = a.=1/4 (we obtain a*
>1/4 fori=1,2,3). It can also be shown that if we consider
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the limit A,—0 andA,—E/7 (thatis,p(E) is constantin by Lise and Jensen if2] is not in the method itself, but in
the interval[0,E.], which corresponds to the approximation the strong dependence of the output of the calculations on

of Ref.[2]), thena* =2/9. the compatibility between the distributign(E) and the as-
In general, for all values df, the regions of the parameter Sumed dynamical rules that presumably lead to it. We also
space associated witl<1/4 are determined by showed that thep(E) approximation used by Lise and

Jensen does not correspond to the model they intend to ana-
lyze, namely ROFC, but to another nonconservative model,
E_ EA _ ﬁA <0 22) the extremal Feder-Feder model. If we adopt the EFF dy-
¢ 24°P 2170 namical rules, Lise and Jensen’s method will lead to the right
conclusions. In the end, we followed the same approach but

) now consider a more realistic approach fofE) and get
Fig. 3 we see that only for a very small range of the param-gssentially the same results that had already been obtained
etersA, andAy, are there values af, in the physical range through the use of other arguments[Bi4], that is, in the

(0<ac=1/4). In all of those cased,;, is very small and the  ROFC model there is SOC only in the conservative limit.
shape op(E) is very close to the constant form used by Lise

and Jensen. Moreoveg varies strongly in these allowed We are thankful to S. R. Salinas for useful discussions
ranges. about the analytical results of the R-OFC model. S. T. R. P.

In conclusion, we showed that, besides not having considacknowledges the support by the Brazilian agency CAPES-
ered lattices big enough, the problem with the approach usedICD.

From this inequality plus the relatioB.=7A,+3A; (see
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