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Random-neighbor Olami-Feder-Christensen slip-stick model
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We reconsider the treatment of Lise and Jensen@Phys. Rev. Lett.76, 2326~1996!# on the random neighbor
Olami-Feder-Christensen stik-slip model@Phys. Rev. Lett.68, 1244 ~1992!# and examine the strong depen-
dence of the results on the approximations used for the distribution of statesp(E). @S1063-651X~98!09308-8#

PACS number~s!: 05.40.1j, 05.70.Jk, 05.70.Ln
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The work of Olami, Feder, and Christensen@1# on a slip-
stick earthquake model indicated, some time ago, that s
organized criticality~SOC! may occur without a local con
servation law. Recently, it has been claimed by Lise a
Jensen@2# that the random-neighbor version of the Olam
Feder-Christensen~OFC! model also presents critical beha
ior above some critical dissipation levelac,a0, wherea0
51/q is associated with local conservation forq neighbors.
These authors based their claims on some theoretical m
field arguments and on numerical simulations with syste
with up toN54002 sites. In order to perform the mean-fie
calculation they had to make many different assumpti
about the behavior of the model.

More recently, Chabanol and Hakin@3# and Bröker and
Grassberger@4# performed a more detailed analysis of t
same model, showing that what has been interpreted
critical behavior in@2# indeed corresponds to a subcritic
region with very large~but finite! mean avalanche sizes. A
though Bröker and Grassberger@4# give a comprehensive
treatment of the random-neighbor version of the OFC mo
~which we will designate ROFC!, it may be of interest to
detect exactly where the theoretical arguments given in@2#
fail, since that point is not transparent in their paper a
similar problems may occur or be of interest in the futu
This is the aim of our paper. We will show that the proble
is not in the method used in@2# ~which eventually can give
useful information about the mechanism behind SOC! but in
the strong dependence of the output of the calculations
the exact form of the distribution of statesp(E) of the sys-
tem.

To reinforce the strong dependence of the results on
specific form ofp(E), we revisit the ROFC model, but thi
time introducing a simple and small modification on t
p(E) distribution, which consists in replacing the interv
@0,Ec# where the uniform distribution used by Lise an
Jensen was defined by the interval@0,E!#, with E!

,Ec (Ec is the threshold value above which the sites b
come unstable and relax!, that is,

p~E!5
1

E!
Q~E!Q~E!2E!, ~1!
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whereQ(x) is the Heaviside function@see Fig. 1~a!#.
The random version of the OFC model~ROFC! consists

of N sites initially with an energyEi,Ec , for i 51, . . . ,N.
The sites with energyE below Ec are stable sites~inactive!
and will be labeled by a minus superscript; the sites w
energyE aboveEc are unstable~active! and will be labeled
by a plus superscript. The energies of all sites are increa
slowly until the instantt when the energy of a certain sitei
reaches the valueEc . This site then becomes unstable a
the system relaxes in a very short time scale according to
rules

Ei~ t11!50, Ern~ t11!5Ern~ t !1aE1, ~2!

whereErn stands for the energy ofq other sites chosen a
random anda<1/q. Eventually some of theseq sites may
become unstable and also relax and so may generate an
lanching process that stops only when the energies of
sites are again belowEc . If we havea5ac51/q we say that
the system is conservative.

Following @2#, the probability of an inactive site to b
activated by receiving a contributionaE1 of an active site is

P1~E1!5

E
Ec2aE1

Ec
p~E!dE

E
0

`

p~E!dE

5
E!2Ec1aE1

E!
. ~3!

The branching ratios is the average number of new unstab
sites created by an unstable site that relaxes. Clearly, in o
to have a critical branching process, we must haves51. For
q random neighbors we have

s5q

E
Ec

`

dE1P1~E1! p~E1!

E
Ec

`

dE1p~E1!

, ~4!

wherep(E1) is the distribution of states for unstable site
that is, sites with energy aboveE!. Adopting the notation
^•••&[*(•••)p(E)dE/*p(E)dE for averages, we find

s5qFE!2Ec

E!
1

a

E!
^E1&G . ~5!
3997 © 1998 The American Physical Society
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The critical branching ratios51 defines a valueac above
which infinite avalanches may occur. The quantity^E1& is
estimated@2# as

^E1&5
^E2&
12a

. ~6!

The average onE2 is calculated as

^E2&5

E
Ec2aE1

Ec
p~E!dE

E
Ec2aE1

Ec
p~E!dE

5
1

E!2Ec1a^E1&
E

Ec2a^E1&

E!

E2dE

5
1

2

~E!!22Ec
21~2Ec2a^E1&!a^E1&

E!2Ec1a^E1&
. ~7!

With this result and Eq.~6! we get

~2a2a2!x21@2E!~12a!22Ec#x1Ec
22~E!!250,

~8!

wherex5^E1&. This leads to the simple solution

^E1&5
Ec1E!

22a
. ~9!

Finally, we get for the branching ratio

s5qFE!2Ec

E!
1

a~Ec1E!!

E!~22a!
G . ~10!

The critical conditions51 leads to

FIG. 1. ~a! Uniform approximation for the energy distributio
p(E) of the ROFC model. The solid line corresponds to the inter
of E used by Lise and Jensen,@0,Ec#; the dashed line correspond
to a smaller interval ofE, @0,E!#, used in our calculations.~b! A
more realistic approximation~non-uniform! of the energy distribu-
tion of the ROFC model, forq54 ~with four peaks!. The param-
etersDp andDb are, respectively, the half-width of the peaks a
the width of the gaps. The value ofp(E) at the peaks isa andEc

>E!57Dp13Db .
ac5
Ec2E!~q21!/q

Ec1E!/2q
. ~11!

For example, ifq54 ~the case studied in@2#!, we have

ac5
Ec23E!/4

Ec1E!/8
. ~12!

If we considerE!5Ec we recover Lise and Jensen’s valu
ac52/9. However, the value ofac has a strong dependenc
on the value ofE!. We see that, already for the valu
E!/Ec524/2550.96, ac achieves the physical limit 0.25.

In Fig. 2 we show the behavior of the normalized co
pling ãc5qac/4 as a function ofE!. With this normaliza-
tion, the conservative case always corresponds toã50.25
~as forq54). We see that the allowed region of values f
E! so thatãc,0.25 is very narrow for anyq and that the
value ofac varies strongly in this region. We have alread
shown in another work~see @5#! that already with lattices
with N56002 sites it is possible to see a finite mean si
avalanche fora50.23, in contrast to the results of@2# based
on simulations in lattices withN54002.

Besides showing that Lise and Jensen’s approach is
robust with respect top(E), we may ask what kind of mode
produces the uniform distribution

p~E!5Q~E!Q~12E! ~13!

used by those authors. We found that an extremal versio
the Feder-Feder model, hereforth called the EFF model,
deed produces this distribution. Extremal here is used in
same sense it was used in the Bak-Snappen coevolu
model @6#. In the dynamics of extremal models there is
driving step. We locate the sitei with the largest value of
Ei5max$Ej% at the initial instantt. This site relaxes follow-
ing the original Feder-Feder rules

Ei
m~ t11!5h, Enn~ t11!5Enn~ t !1a, ~14!

l

FIG. 2. Normalized ‘‘critical’’ dissipation levelãc5ka/4 as a

function ofE!. Values forãc above 0.25 are not physically admis
sible.
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FIG. 3. Space of parameters forp(E) in terms
of gp5Dp /Ec and gb5Db /Ec . The shaded re-
gions correspond to the intersection betweena
<1/4 and (7Dp13Db)/Ec57gp13gb<1. De-
pending on the value ofEc2aE1, we have~a!
Ec2aE1e@0,Dp#; ~b! Ec2aE1e@Dp1Db,3Dp

1Db#, ~c! Ec2aE1e@3Dp12Db,5Dp12Db#,
and ~d! Ec2aE1e@5Dp13Db,7Dp13Db#.
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whereh is a noise,hP@0,e#. If we considere5a51/4 we
will have Eq.~13!. In this model the size of an avalanche
defined as the number of sites with energyEi

m.1 that relax
in a row. Now, if we repeat Lise and Jensen’s calculat
using these EFF rules instead of the OFC rules, we get
self-consistent resultac5Ec /q.

It is also possible to show that a more realistic assump
aboutp(E) leads essentially to the same results obtained
@3,4#. If we simulate the ROFC model withq54 we will get
an energy distributionp(E) with four peaks@2#. They show
clearly thatp(E) is not a simple constant. We then decid
to repeat the same calculations but supposing this time
p(E) had the~more realistic! form shown in Fig. 1~b!, where
Dp is half the width of each peak andDb is the width of the
gaps between two peaks. This means that

p~E!5H a for EPI 1 , EPI 2 , EPI 3 , or EPI 4

0 otherwise,
~15!

where I 15@0,Dp#, I 25@Dp1Db,3Dp1Db#, I 35@3Dp
12Db,5Dp12Db#, andI 45@5Dp13Db,7Dp13Db#.

We also have thatE* 53Db17Dp is the maximum value
for which p(E)Þ0. Then we have

P1~E1!5

E
Ec2aE1

Ec
p~E!dE

E
0

`

p~E!dE

5
1

7aDp
. ~16!

The lower limit of the integral in the numeratorEc
2aE1 can now belong to any of the four intervals th
define the peaks of the distribution, to which we will asss
the indicesi 51,2,3,4. Considering each one of the possib
ties, the integralsP1

i (E1) assume the generic form

P1
i ~E1!511

~ i 21!Db

7Dp
2

Ec

7Dp
1

aE1

7Dp
. ~17!
n
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The branching rate is given by

s54P1
i 54F11

~ i 21!Db

7Dp
2

Ec

7Dp
1

a^E1&
7Dp

G . ~18!

In a similar way used to obtain Eq.~7!, we calculate an
expression for̂E2&, which is associated with Eq.~6!, which
leads

^E1& i5
Ec

a~22a!
2

@7Dp1~ i 21!Db# ~12a!

a~22a!

6
Ayi

2a~22a!
, ~19!

where

yi54$Ec~12a!2@7Dp1~ i 21!Db#%2

14a~22a!@xi214~ i 21!#DpDb , ~20!

with xi524, 26, 32, and 42, fori 51, 2, 3, and 4, respec
tively. Imposing the branching conditions51 and using Eq.
~19! we get

7Dp~21a!14~ i 21!Db24Ec~12a!17aEc6Ayi50.
~21!

For instance, if we takeDp50.08 andDb50.1 @which cor-
responds to Fig. 1~b!#, the critical branching condition lead
to values of a* outside the physical range~that is, a!

.1/4). Therefore, in this particular example, it is physica
forbidden to assume thats51, so there is no self-organize
critical state.

If we take the limit for the conservative case~that is,Dp
→0 andDb→aEc), the four peaks tend to fourd functions
at (i 21)aEc and it is easy to see that the conditions51
leads to the only possibilitya* 5ac51/4 ~we obtain a*
.1/4 for i 51,2,3). It can also be shown that if we consid
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the limit Db→0 andDp→Ec/7 „ that is,p(E) is constant in
the interval@0,Ec#, which corresponds to the approximatio
of Ref. @2#…, thena* 52/9.

In general, for all values ofi , the regions of the paramete
space associated witha<1/4 are determined by

Ec2
175

24
Dp2

2xi

21
Db<0. ~22!

From this inequality plus the relationEc>7Dp13Db ~see
Fig. 3! we see that only for a very small range of the para
etersDp andDb are there values ofac in the physical range
(0,ac<1/4). In all of those cases,Db is very small and the
shape ofp(E) is very close to the constant form used by Li
and Jensen. Moreover,a varies strongly in these allowe
ranges.

In conclusion, we showed that, besides not having con
ered lattices big enough, the problem with the approach u
et
-

d-
ed

by Lise and Jensen in@2# is not in the method itself, but in
the strong dependence of the output of the calculations
the compatibility between the distributionp(E) and the as-
sumed dynamical rules that presumably lead to it. We a
showed that thep(E) approximation used by Lise an
Jensen does not correspond to the model they intend to
lyze, namely ROFC, but to another nonconservative mo
the extremal Feder-Feder model. If we adopt the EFF
namical rules, Lise and Jensen’s method will lead to the ri
conclusions. In the end, we followed the same approach
now consider a more realistic approach forp(E) and get
essentially the same results that had already been obta
through the use of other arguments in@3,4#, that is, in the
ROFC model there is SOC only in the conservative limit.

We are thankful to S. R. Salinas for useful discussio
about the analytical results of the R-OFC model. S. T. R.
acknowledges the support by the Brazilian agency CAP
PICD.
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